Summary
This paper investigates the effects of blue light on mood and melatonin synthesis in healthy subjects, considering chronotype and gender.
Categories
Lighting Design Considerations: The paper investigates the effects of blue light on mood and melatonin synthesis, which is relevant to lighting design considerations.
Hormone regulation: The paper discusses the impact of blue light on melatonin synthesis, which is a hormone regulation topic.
Mood regulation: The paper explores how blue light can affect mood, which falls under the category of mood regulation.
Cognitive function and memory: The paper discusses the potential effects of blue light on cognitive performance and alertness, which is relevant to cognitive function and memory.
Sleep and insomnia: The paper discusses the impact of blue light on melatonin synthesis, which is relevant to sleep and insomnia.
Well-being: The paper discusses the potential effects of blue light on mood and well-being.
Author(s)
D Sülflow
Publication Year
2013
Number of Citations
5
Related Publications
Lighting Design Considerations
- Color appearance models
- Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function
- Acute alerting effects of light: A systematic literature review
- Form and function of the M4 cell, an intrinsically photosensitive retinal ganglion cell type contributing to geniculocortical vision
- Melanopsin and rod–cone photoreceptors play different roles in mediating pupillary light responses during exposure to continuous light in humans
Hormone regulation
- Phototransduction by retinal ganglion cells that set the circadian clock
- The impact of light from computer monitors on melatonin levels in college students
- Circadian rhythms–from genes to physiology and disease
- Effects of artificial dawn and morning blue light on daytime cognitive performance, well-being, cortisol and melatonin levels
- Light pollution, circadian photoreception, and melatonin in vertebrates
Mood regulation
- Effects of artificial dawn and morning blue light on daytime cognitive performance, well-being, cortisol and melatonin levels
- Nocturnal light exposure impairs affective responses in a wavelength-dependent manner
- The role of the circadian clock in animal models of mood disorders.
- Signalling by melanopsin (OPN4) expressing photosensitive retinal ganglion cells
- Early electronic screen exposure and autistic-like symptoms
Cognitive function and memory
- Phototransduction by retinal ganglion cells that set the circadian clock
- The two‐process model of sleep regulation: a reappraisal
- Strange vision: ganglion cells as circadian photoreceptors
- Information processing in the primate retina: circuitry and coding
- Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function
Sleep and insomnia
- The two‐process model of sleep regulation: a reappraisal
- Strange vision: ganglion cells as circadian photoreceptors
- Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function
- Functional and morphological differences among intrinsically photosensitive retinal ganglion cells
- The impact of light from computer monitors on melatonin levels in college students
Well-being
- Acute alerting effects of light: A systematic literature review
- Effects of artificial dawn and morning blue light on daytime cognitive performance, well-being, cortisol and melatonin levels
- Can light make us bright? Effects of light on cognition and sleep
- Light pollution, circadian photoreception, and melatonin in vertebrates
- Kruithof's rule revisited using LED illumination